Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.214
Filtrar
1.
Mymensingh Med J ; 33(2): 461-465, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557526

RESUMO

Urothelial carcinoma (UC) is the most common malignancy of urinary bladder. It is the 9th leading cause of death worldwide and second most common genitourinary malignancy among male. Incidence is increasing in developing countries like Bangladesh. About 80% of patients are found between 50 to 80 years of age. It is 3-4 times more common in male than in female. Determination of therapeutic strategy and prediction of progression of urothelial carcinoma is a major clinical challenge. Treatment of urothelial carcinoma still now mostly depends on pathological stages. Amplification or genomic alteration of Cyclin D1 (a proto-oncogene) may cause protein overexpression which is frequently realized as a clonal pathology in various human neoplasms including bladder cancer. Evaluation of Cyclin D1 expression is promising for guiding therapeutic strategies, risk stratification and prediction of tumor progression. The aim of the study was to determine the expression of Cyclin D1 in urothelial carcinoma of urinary bladder and its association with tumour grade. This cross-sectional observational study was conducted in Department of Pathology, Dhaka Medical College, Dhaka, Bangladesh from July 2019 to June 2021. Histomorphologically diagnosed 51 urothelial carcinomas were included. Sections were stained with hematoxylin and eosin. Immunostaining with Cyclin D1 antibody was also done. Relevant information was collected and recorded in a predesigned data sheet. Statistical analysis was carried out as required. Mean age ±SD was 57.8±10.55 years. Male female ratio was 4.6:1. In this study 39(76.5%) patients were smoker. Regarding clinical presentations 36(70.6%) patients presented with painless hematuria alone. Lateral wall (64.7%) was the most frequent tumor location. Among 51 cases, 38(74.5%) cases were high grade urothelial carcinoma (HGUC) and 13(25.5%) cases were low grade urothelial carcinoma (LGUC). Considering Cyclin D1 expression, most of the LGUC cases showed high level of expression by both percentage (84.6%) and intensity (84.6%). Most of the HGUC cases showed low level of expression by both percentage (63.2%) and intensity (60.5%). Cyclin D1 showed significant inverse association with HGUC (p<0.05). In urothelial carcinoma of urinary bladder, Cyclin D1 expression was decreased with increasing grade of the tumor. Cyclin D1 expression was inversely associated with tumour grade.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Feminino , Humanos , Masculino , Bangladesh/epidemiologia , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/patologia , Estudos Transversais , Ciclina D1/metabolismo , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
2.
Bratisl Lek Listy ; 125(5): 311-317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38624056

RESUMO

OBJECTIVES: In this study, we analyzed pTa bladder cancer (BC) for molecular markers BCL2, TP53, FOXA1, and GATA3 in relation to cancer recurrence. METHODS: We analyzed samples of 79 patients with the pTa stage of BC using a real-time polymerase chain reaction (real-time PCR) between September 2018 and September 2020. The expression levels of BCL2, TP53, FOXA1, and GATA3 were compared with homologous non-tumor bladder tissue. RESULTS: Expression of FOXA1, GATA3, and TP53 was significantly higher (p<0.01) in NMIBC samples compared to homologous non-tumor tissue. The expression of TP53 and FOXA1 in pTa was significantly lower (p<0.01) in the high-grade (HG) tumor when compared to the low-grade (LG) tumor. In contrast, the relative quantification (RQ) of GATA3 was significantly higher (p<0.01) in HG pTa. Patients with recurrence (pTa=33) had significantly higher expression of TP53, and GATA3 (p<0.01), and the gene of FOXA1 (p<0.01) had a significantly lower expression when compared to pTa tumors without recurrence. The expression of Bcl-2 was not statistically significant. CONCLUSION: Our results, indicate, that comparing expression levels of these genes in cancer and cancer-free tissue could provide valuable data, as patients with pTa BC recurrence within up to 54 months of follow-up had a significantly higher RQ of TP53, GATA3, and FOXA1 when compared to pTa BC patients without recurrence (Tab. 2, Fig. 8, Ref. 54). Text in PDF www.elis.sk Keywords: bladder cancer, gene expression, recurrence, GATA3, FOXA1, TP53, BCL2.


Assuntos
Neoplasias da Bexiga Urinária , Bexiga Urinária , Humanos , Bexiga Urinária/química , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Biomarcadores Tumorais/análise , Proteína Supressora de Tumor p53/genética , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo
3.
Mol Cancer ; 23(1): 52, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461272

RESUMO

BACKGROUND: Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is one of the causes of tumor immune tolerance and failure of cancer immunotherapy. Here, we found that bladder cancer (BCa)-derived exosomal circRNA_0013936 could enhance the immunosuppressive activity of PMN-MDSCs by regulating the expression of fatty acid transporter protein 2 (FATP2) and receptor-interacting protein kinase 3 (RIPK3). However, the underlying mechanism remains largely unknown. METHODS: BCa-derived exosomes was isolated and used for a series of experiments. RNA sequencing was used to identify the differentially expressed circRNAs. Western blotting, immunohistochemistry, immunofluorescence, qRT-PCR, ELISA and Flow cytometry were performed to reveal the potential mechanism of circRNA_0013936 promoting the immunosuppressive activity of PMN-MDSC. RESULTS: CircRNA_0013936 enriched in BCa-derived exosomes could promote the expression of FATP2 and inhibit the expression of RIPK3 in PMN-MDSCs. Mechanistically, circRNA_0013936 promoted the expression of FATP2 and inhibited the expression of RIPK3 expression via sponging miR-320a and miR-301b, which directly targeted JAK2 and CREB1 respectively. Ultimately, circRNA_0013936 significantly inhibited the functions of CD8+ T cells by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway, and down-regulating RIPK3 through the circRNA_0013936/miR-301b/CREB1 pathway in PMN-MDSCs. CONCLUSIONS: BCa-derived exosomal circRNA_0013936 promotes suppressive immunity by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway and down-regulating RIPK3 through the circRNA_0013936/miR-301b-3p/CREB1 pathway in PMN-MDSCs. These findings help to find new targets for clinical treatment of human bladder cancer.


Assuntos
MicroRNAs , Células Supressoras Mieloides , RNA Circular , Neoplasias da Bexiga Urinária , Humanos , Linfócitos T CD8-Positivos/metabolismo , Ácidos Graxos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Supressoras Mieloides/metabolismo , Proteínas Quinases/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Exossomos/genética , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
4.
Sci Immunol ; 9(93): eadi5578, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427717

RESUMO

Urinary tract infections (UTIs) account for almost 25% of infections in women. Many are recurrent (rUTI), with patients frequently experiencing chronic pelvic pain and urinary frequency despite clearance of bacteriuria after antibiotics. To elucidate the basis for these bacteria-independent bladder symptoms, we examined the bladders of patients with rUTI. We noticed a notable increase in neuropeptide content in the lamina propria and indications of enhanced nociceptive activity. In mice subjected to rUTI, we observed sensory nerve sprouting that was associated with nerve growth factor (NGF) produced by recruited monocytes and tissue-resident mast cells. Treatment of rUTI mice with an NGF-neutralizing antibody prevented sprouting and alleviated pelvic sensitivity, whereas instillation of native NGF into naïve mice bladders mimicked nerve sprouting and pain behavior. Nerve activation, pain, and urinary frequency were each linked to the presence of proximal mast cells, because mast cell deficiency or treatment with antagonists against receptors of several direct or indirect mast cell products was each effective therapeutically. Thus, our findings suggest that NGF-driven sensory sprouting in the bladder coupled with chronic mast cell activation represents an underlying mechanism driving bacteria-independent pain and voiding defects experienced by patients with rUTI.


Assuntos
Mastócitos , Bexiga Urinária , Humanos , Camundongos , Feminino , Animais , Bexiga Urinária/inervação , Bexiga Urinária/metabolismo , Fator de Crescimento Neural/metabolismo , Reinfecção/complicações , Reinfecção/metabolismo , Dor/etiologia , Dor/metabolismo , Dor/prevenção & controle
5.
Biomaterials ; 307: 122514, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428093

RESUMO

Surgical intervention followed by chemotherapy is the principal treatment strategy for bladder cancer, which is hindered by significant surgical risks, toxicity from chemotherapy, and high rates of recurrence after surgery. In this context, a novel approach using mild magnetic hyperthermia therapy (MHT) for bladder cancer treatment through the intra-bladder delivery of magnetic nanoparticles is presented for the first time. This method overcomes the limitations of low magnetic thermal efficiency, inadequate tumor targeting, and reduced therapeutic effectiveness associated with the traditional intravenous administration of magnetic nanoparticles. Core-shell Zn-CoFe2O4@Zn-MnFe2O4 (MNP) nanoparticles were developed and further modified with hyaluronic acid (HA) to enhance their targeting ability toward tumor cells. The application of controlled mild MHT using MNP-HA at temperatures of 43-44 °C successfully suppressed the proliferation of bladder tumor cells and tumor growth, while also decreasing the expression levels of heat shock protein 70 (HSP70). Crucially, this therapeutic approach also activated the body's innate immune response involving macrophages, as well as the adaptive immune responses of dendritic cells (DCs) and T cells, thereby reversing the immunosuppressive environment of the bladder tumor and effectively reducing tumor recurrence. This study uncovers the potential immune-activating mechanism of mild MHT in the treatment of bladder cancer and confirms the effectiveness and safety of this strategy, indicating its promising potential for the clinical management of bladder cancer with a high tendency for relapse.


Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária , Humanos , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Hipertermia Induzida/métodos , Recidiva Local de Neoplasia , Neoplasias da Bexiga Urinária/patologia , Fenômenos Magnéticos , Linhagem Celular Tumoral
6.
Biol Direct ; 19(1): 20, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454507

RESUMO

CircLRIG1, a newly discovered circRNA, has yet to have its potential function and biological processes reported. This study explored the role of circLRIG1 in the development and progression of bladder carcinoma and its potential molecular mechanisms. Techniques such as qRT-PCR, Western blot, various cellular assays, and in vivo models were used to investigate mRNA and protein levels, cell behavior, molecular interactions, and tumor growth. The results showed that both circLRIG1 and LRIG1 were significantly reduced in bladder carcinoma tissues and cell lines. Low circLRIG1 expression was associated with poor patient prognosis. Overexpressing circLRIG1 inhibited bladder carcinoma cell growth, migration, and invasion, promoted apoptosis, and decreased tumor growth and metastasis in vivo. Importantly, circLRIG1 was found to sponge miR-214-3p, enhancing LRIG1 expression, and its overexpression also modulated protein levels of E-cadherin, N-cadherin, Vimentin, and LRIG1. Similar effects were observed with LRIG1 overexpression. Notably, a positive correlation was found between circLRIG1 and LRIG1 expression in bladder carcinoma tissues. Additionally, the tumor-suppressing effect of circLRIG1 was reversed by overexpressing miR-214-3p or silencing LRIG1. The study concludes that circLRIG1 suppresses bladder carcinoma progression by enhancing LRIG1 expression via sponging miR-214-3p, providing a potential strategy for early diagnosis and treatment of bladder carcinoma.


Assuntos
Carcinoma , MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Carcinoma/genética , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Glicoproteínas de Membrana/metabolismo
7.
PLoS One ; 19(3): e0295104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478501

RESUMO

BACKGROUND: Melatonin (MEL) is an indole amine molecule primarily produced in the pineal gland. Melatonin has been shown in numerous studies to have antifibrotic effects on the kidney, liver, and other organs. However, it is still unclear how melatonin works in bladder fibrosis. We explored how melatonin affects animals with bladder fibrosis and the underlying mechanisms. MATERIALS AND METHODS: MEL was used to treat human bladder smooth muscle cells (HBdSMCs) after they were stimulated with transforming growth factor-ß1 (TGF-ß1) in vitro. Proteomic analysis and bioinformatic analysis of the altered expression of these proteins were subsequently performed on HBdSMCs from the different processing methods. To construct an in vivo bladder fibrosis model, we injected protamine sulfate (PS) and lipopolysaccharide (LPS) twice a week into the rat bladder for six weeks. After two weeks of PS/LPS treatment, the mice in the treatment group were treated with MEL (20 mg/kg/d) for 4 weeks. Finally, we detected the expression of fibrosis markers from different perspectives. The TGF-ß1/Smad pathway and epithelial-mesenchymal transition (EMT) in cell and bladder tissues were also identified. Further proteomic analysis was also performed. RESULTS: In vitro, we found that TGF-ß1 treatment enhanced the expression of the fibrosis markers collagen III and α-SMA in HBdSMCs. E-cadherin expression decreased while the TGF-ß1/Smad pathway was activated. Vimentin and N-cadherin expression was also elevated at the same time. Similar findings were observed in the LPS group. After MEL treatment, the expression of collagen III and α-SMA decreased, the expression of E-cadherin increased, and the expression of vimentin and N-cadherin also decreased. According to our quantitative proteomics analysis, CCN1 and SQLE may be important proteins involved in the development of bladder fibrosis. MEL decreased the expression of these genes, leading to the relief of bladder fibrosis. Bioinformatics analysis revealed that the extracellular space structure related to metabolic pathways, actin filament binding, and stress fibers can serve as a pivotal focus in the management of fibrosis. CONCLUSION: Melatonin attenuates bladder fibrosis by blocking the TGF-ß1/Smad pathway and EMT. CCN1 appears to be a possible therapeutic target for bladder fibrosis.


Assuntos
Melatonina , Fator de Crescimento Transformador beta1 , Ratos , Humanos , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Vimentina/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Transdução de Sinais , Bexiga Urinária/metabolismo , Lipopolissacarídeos/farmacologia , Proteômica , Fibrose , Transição Epitelial-Mesenquimal , Colágeno/farmacologia , Caderinas/metabolismo
8.
Cell Death Dis ; 15(3): 204, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467612

RESUMO

Mitochondria play a multifaceted role in supporting bladder cancer progression. Translocase of inner mitochondrial membrane 44 (TIMM44) is essential for maintaining function and integrity of mitochondria. We here tested the potential effect of MB-10 (MitoBloCK-10), a first-in-class TIMM44 blocker, against bladder cancer cells. TIMM44 mRNA and protein expression is significantly elevated in both human bladder cancer tissues and cells. In both patient-derived primary bladder cancer cells and immortalized (T24) cell line, MB-10 exerted potent anti-cancer activity and inhibited cell viability, proliferation and motility. The TIMM44 blocker induced apoptosis and cell cycle arrest in bladder cancer cells, but failed to provoke cytotoxicity in primary bladder epithelial cells. MB-10 disrupted mitochondrial functions in bladder cancer cells, causing mitochondrial depolarization, oxidative stress and ATP reduction. Whereas exogenously-added ATP and the antioxidant N-Acetyl Cysteine mitigated MB-10-induced cytotoxicity of bladder cancer cells. Genetic depletion of TIMM44 through CRISPR-Cas9 method also induced robust anti-bladder cancer cell activity and MB-10 had no effect in TIMM44-depleted cancer cells. Contrarily, ectopic overexpression of TIMM44 using a lentiviral construct augmented proliferation and motility of primary bladder cancer cells. TIMM44 is important for Akt-mammalian target of rapamycin (mTOR) activation. In primary bladder cancer cells, Akt-S6K1 phosphorylation was decreased by MB-10 treatment or TIMM44 depletion, but enhanced after ectopic TIMM44 overexpression. In vivo, intraperitoneal injection of MB-10 impeded bladder cancer xenograft growth in nude mice. Oxidative stress, ATP reduction, Akt-S6K1 inhibition and apoptosis were detected in MB-10-treated xenograft tissues. Moreover, genetic depletion of TIMM44 also arrested bladder cancer xenograft growth in nude mice, leading to oxidative stress, ATP reduction and Akt-S6K1 inhibition in xenograft tissues. Together, targeting overexpressed TIMM44 by MB-10 significantly inhibits bladder cancer cell growth in vitro and in vivo.


Assuntos
Transdução de Sinais , Neoplasias da Bexiga Urinária , Camundongos , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Nus , Bexiga Urinária/metabolismo , Proliferação de Células , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Apoptose , Trifosfato de Adenosina/farmacologia , Linhagem Celular Tumoral , Mamíferos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial
9.
Nutrients ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474751

RESUMO

Only 20% of patients with muscle-invasive bladder carcinoma respond to cisplatin-based chemotherapy. Since the natural phytochemical sulforaphane (SFN) exhibits antitumor properties, its influence on the adhesive and migratory properties of cisplatin- and gemcitabine-sensitive and cisplatin- and gemcitabine-resistant RT4, RT112, T24, and TCCSUP bladder cancer cells was evaluated. Mechanisms behind the SFN influence were explored by assessing levels of the integrin adhesion receptors ß1 (total and activated) and ß4 and their functional relevance. To evaluate cell differentiation processes, E- and N-cadherin, vimentin and cytokeratin (CK) 8/18 expression were examined. SFN down-regulated bladder cancer cell adhesion with cell line and resistance-specific differences. Different responses to SFN were reflected in integrin expression that depended on the cell line and presence of resistance. Chemotactic movement of RT112, T24, and TCCSUP (RT4 did not migrate) was markedly blocked by SFN in both chemo-sensitive and chemo-resistant cells. Integrin-blocking studies indicated ß1 and ß4 as chemotaxis regulators. N-cadherin was diminished by SFN, particularly in sensitive and resistant T24 and RT112 cells, whereas E-cadherin was increased in RT112 cells (not detectable in RT4 and TCCSup cells). Alterations in vimentin and CK8/18 were also apparent, though not the same in all cell lines. SFN exposure resulted in translocation of E-cadherin (RT112), N-cadherin (RT112, T24), and vimentin (T24). SFN down-regulated adhesion and migration in chemo-sensitive and chemo-resistant bladder cancer cells by acting on integrin ß1 and ß4 expression and inducing the mesenchymal-epithelial translocation of cadherins and vimentin. SFN does, therefore, possess potential to improve bladder cancer therapy.


Assuntos
Isotiocianatos , Sulfóxidos , Neoplasias da Bexiga Urinária , Bexiga Urinária , Humanos , Bexiga Urinária/metabolismo , Cisplatino , Gencitabina , Vimentina , Linhagem Celular Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico , Caderinas/metabolismo , Integrinas/metabolismo , Integrinas/uso terapêutico
10.
Hypertens Res ; 47(4): 987-997, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351189

RESUMO

In men, the lower urinary tract comprises the urinary bladder, urethra, and prostate, and its primary functions include urine storage and voiding. Hypertension is a condition that causes multi-organ damage and an age-dependent condition. Hypertension and the renin-angiotensin system activation are associated with the development of lower urinary tract dysfunction. Hypertensive animal models show bladder dysfunction, urethral dysfunction, and prostatic hyperplasia. In the renin-angiotensin system, angiotensin II and the angiotensin II type 1 receptor, which are expressed in the lower urinary tract, have been implicated in the pathogenesis of lower urinary tract dysfunction. Moreover, among the several antihypertensives, renin-angiotensin system inhibitors have proven effective in human and animal models of lower urinary tract dysfunction. This review aimed to elucidate the hitherto known mechanisms underlying the development of lower urinary tract dysfunction in relation to hypertension and the angiotensin II/angiotensin II type 1 receptor axis and the effect of renin-angiotensin system inhibitors on lower urinary tract dysfunction. Possible mechanisms through which hypertension or activation of Ang II/AT1 receptor axis causes LUTD such as bladder dysfunction, urethral dysfunction, and prostatic hyperplasia. LUT: lower urinary tract, LUTD: lower urinary tract dysfunction, AT1: angiotensin II type 1, ACE: angiotensin-converting enzyme.


Assuntos
Hipertensão , Hiperplasia Prostática , Masculino , Animais , Humanos , Bexiga Urinária/metabolismo , Angiotensina II/farmacologia , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina , Anti-Hipertensivos/farmacologia , Inibidores Enzimáticos/farmacologia
11.
Asian Pac J Cancer Prev ; 25(2): 637-646, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415551

RESUMO

BACKGROUND: In Egypt, bladder cancer occupies the second rankamong reported cancers in men. Claudins are tight junctions that have a critical role in tumor pathogenesis, invasion, progression, and metastasis and currentlyare a focus of interest for targeting therapies. OBJECTIVES: We aimed to evaluatethe immunohistochemical expression of Claudin-1 and Claudin-4 in urinary bladder urothelial carcinoma and investigate the relationshipbetweenthe expressed Claudins with differentclinicopathological parameters. METHODS: Claudin-1 and Claudin-4 immunohistochemical expression was studied in 62 cases of urinary bladder urothelial carcinomas. The cases were classified into two categories; low and high Claudin-1 and Claudin-4 expression. RESULTS: High Claudin-1 expression was detected in67.7% of the studied urothelial carcinomas while 32.3% showed low expression. Claudin-1 expression was reduced significantly with high tumor grade, non-papillary tumors, muscle invasion, schistosomal infestation, and perineural invasion (p-value < 0.05). Claudin-4 high expression was detected in 82.3% of our cases while low expression was detected in 17.7%. Claudin-4 reduced expression was significantly associated with non-papillary tumors, muscle invasion, advanced T stages, and associated lympho-vascular emboli (P-value < 0.05). CONCLUSION: According to the results ofthe present study, the reduced expressions of Claudin-1 and Claudin-4 provide clues concerning the progression of urothelial carcinoma. Consequently, it is thought that Claudin-1 and Claudin-4 could help to differentiatelow-grade from high-grade and muscle-invasive from non-muscle-invasive urothelial carcinomas. In addition, it can be introduced as a possible therapeutic target.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Masculino , Humanos , Carcinoma de Células de Transição/metabolismo , Neoplasias da Bexiga Urinária/patologia , Claudina-4 , Claudina-1 , Bexiga Urinária/metabolismo , Claudinas , Biomarcadores Tumorais/metabolismo
12.
Pflugers Arch ; 476(5): 809-820, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38421408

RESUMO

Parathyroid hormone-related protein (PTHrP) released from detrusor smooth muscle (DSM) cells upon bladder distension attenuates spontaneous phasic contractions (SPCs) in DSM and associated afferent firing to facilitate urine storage. Here, we investigate the mechanisms underlying PTHrP-induced inhibition of SPCs, focusing on large-conductance Ca2+-activated K+ channels (BK channels) that play a central role in stabilizing DSM excitability. Perforated patch-clamp techniques were applied to DSM cells of the rat bladder dispersed using collagenase. Isometric tension changes were recorded from DSM strips, while intracellular Ca2+ dynamics were visualized using Cal520 AM -loaded DSM bundles. DSM cells developed spontaneous transient outward potassium currents (STOCs) arising from the opening of BK channels. PTHrP (10 nM) increased the frequency of STOCs without affecting their amplitude at a holding potential of - 30 mV but not - 40 mV. PTHrP enlarged depolarization-induced, BK-mediated outward currents at membrane potentials positive to + 20 mV in a manner sensitive to iberiotoxin (100 nM), the BK channel blocker. The PTHrP-induced increases in BK currents were also prevented by inhibitors of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) (CPA 10 µM), L-type voltage-dependent Ca2+ channel (LVDCC) (nifedipine 3 µM) or adenylyl cyclase (SQ22536 100 µM). PTHrP had no effect on depolarization-induced LVDCC currents. PTHrP suppressed and slowed SPCs in an iberiotoxin (100 nM)-sensitive manner. PTHrP also reduced the number of Ca2+ spikes during each burst of spontaneous Ca2+ transients. In conclusion, PTHrP accelerates STOCs discharge presumably by facilitating SR Ca2+ release which prematurely terminates Ca2+ transient bursts resulting in the attenuation of SPCs.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta , Contração Muscular , Músculo Liso , Proteína Relacionada ao Hormônio Paratireóideo , Bexiga Urinária , Animais , Ratos , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiologia , Bexiga Urinária/efeitos dos fármacos , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Ratos Sprague-Dawley , Masculino , Cálcio/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia
13.
Sci Rep ; 14(1): 2782, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307969

RESUMO

Bladder cancer (BC) is a crisis to human health. It is necessary to understand the molecular mechanisms of the development and progression of BC to determine treatment options. Publicly available expression data were obtained from TCGA and GEO databases to spot differentially expressed genes (DEGs) between cancer and normal bladder tissues. Weighted co-expression networks were constructed, and Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Associations in hub genes, immune infiltration, and immune therapy were evaluated separately. Protein-protein interaction (PPI) networks for the genes identified in the normal and tumor groups were launched. 3461 DEGs in the TCGA dataset and 1069 DEGs in the GSE dataset were identified, including 87 overlapping genes between cancer and normal bladder groups. Hub genes in the tumor group were mainly enriched for cell proliferation, while hub genes in the normal group were related to the synthesis and secretion of neurotransmitters. Based on survival analysis, CDH19, RELN, PLP1, and TRIB3 were considerably associated with prognosis (P < 0.05). CDH19, RELN, PLP1, and TRIB3 may play important roles in the development of BC and are potential biomarkers in therapy and prognosis.


Assuntos
Neoplasias da Bexiga Urinária , Bexiga Urinária , Humanos , Bexiga Urinária/metabolismo , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Processos Neoplásicos , Biologia Computacional , Regulação Neoplásica da Expressão Gênica
14.
Neurourol Urodyn ; 43(3): 767-778, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38344939

RESUMO

BACKGROUND AND OBJECTIVE: We explore molecular and metabolic pathways involved in interstitial cystitis (IC) with integrating multi-omics analysis for identifying potential diagnostic and therapeutic targets. METHODS: Mouse models of IC/bladder pain syndrome (BPS) were established by intraperitoneal injection of cyclophosphamide and bladder tissue samples were collected for metabolomics and transcriptome analysis. RESULTS: We found a total of 82 and 145 differential metabolites in positive ion modes and negative ion modes, respectively. Glycerophospholipid metabolism, choline metabolism in cancer, and nucleotide metabolism pathways were significantly enriched in the IC/BPS group. Transcriptome analysis demonstrated that 1069 upregulated genes and 1087 downregulated genes were detected. Importantly, the stronger enrichment for cell cycle pathway was observed in IC/BPS than that in normal bladder tissue, which may be involved in the process of bladder remodeling. Moreover, the inflammatory response and inflammatory factors related pathways were enriched in the IC/BPS group. CONCLUSIONS: Our findings provide critical directions for further exploration of the molecular pathology underlying IC/BPS.


Assuntos
Cistite Intersticial , Animais , Camundongos , Cistite Intersticial/diagnóstico , Transcriptoma , Multiômica , Bexiga Urinária/metabolismo , Perfilação da Expressão Gênica
15.
Dev Growth Differ ; 66(2): 106-118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38197329

RESUMO

Urinary bladder organogenesis requires coordinated cell growth, specification, and patterning of both mesenchymal and epithelial compartments. Tcf21, a gene that encodes a helix-loop-helix transcription factor, is specifically expressed in the mesenchyme of the bladder during development. Here we show that Tcf21 is required for normal development of the bladder. We found that the bladders of mice lacking Tcf21 were notably hypoplastic and that the Tcf21 mutant mesenchyme showed increased apoptosis. There was also a marked delay in the formation of visceral smooth muscle, accompanied by a defect in myocardin (Myocd) expression. Interestingly, there was also a marked delay in the formation of the basal cell layer of the urothelium, distinguished by diminished expression of Krt5 and Krt14. Our findings suggest that Tcf21 regulates the survival and differentiation of mesenchyme cell-autonomously and the maturation of the adjacent urothelium non-cell-autonomously during bladder development.


Assuntos
Fatores de Transcrição , Bexiga Urinária , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica , Músculo Liso/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Bexiga Urinária/metabolismo
16.
J Pharm Biomed Anal ; 240: 115958, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38198886

RESUMO

LC-MS serves as a workhorse for chemical profile characterization of Chinese medicinal materials (CMMs) attributing to the ability of measuring fruitful MS/MS spectral information. However, it is laborious to extract the information belonging to the compounds-of-interest from the massive data matrixes even employing those well-defined post-acquisition data processing strategies. Here, efforts were devoted to propose an integrated strategy allowing rapid chemical homologs-focused data filtering through integrating the fit-for-purpose existing strategies, such as molecular weight imprinting (MWI), diagnostic fragment ion filtering (DFIF), neutral loss filtering (NLF), and isotope pattern filtering (IPF). Homologs-focused chemical characterization of a precious CMM namely Toad gall-bladder (Chinese name: Chandan) that is rich of diverse effective steroid sulfates, particularly bufogenin sulfates, bile acid sulfates and bilichol sulfates, was employed as a proof-of-concept. Recombinant human SULT2A1-catalyzed in vitro metabolism was undertaken to generate eight bufogenin sulfates to facilitate summarizing MS/MS spectral behaviors. After in-house data library construction and MS1 and MS2 spectral acquisition, data filtering was conducted as follows: 1) MWI and IPF was utilized in combination to capture deprotonated molecular ions and the 34S isotopic ions for the sulfates of those reported steroids; 2) m/z 79.9568 (SO3-·) and 96.9596 (HSO4-) were applied to DFIF; and 3) SO3 (79.9568 Da) served as the feature to achieve NLF. Those captured MS/MS information subsequently participated in tentatively structural annotation through applying those empirical mass fragmentation rules. As a result, 71 compounds including 7 bufogenin sulfates, 17 bile acid sulfates, 13 bilichol sulfates and a C-23 steroid sulfate were detected from Toad gall-bladder and thereof, 39 ones received plausible identities assignment. Above all, the steroid sulfates in Toad gall-bladder were profiled in depth, and more importantly, the proposed strategy should be a meaningful option for, but not limited to, submetabolome characterization in CMMs.


Assuntos
Espectrometria de Massas em Tandem , Bexiga Urinária , Humanos , Bexiga Urinária/metabolismo , Esteroides/química , Sulfatos/química , 60705 , Ácidos e Sais Biliares
17.
J Pharm Biomed Anal ; 240: 115966, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38217999

RESUMO

Bladder cancer (BC) ranks among the most common cancers globally, with an increasing occurrence, particularly in developed nations. Utilizing tissue metabolomics presents a promising strategy for identifying potential biomarkers for cancer detection. In this study, we utilized ultra-high-performance liquid chromatography coupled with ultra-high-resolution mass spectrometry (UHPLC-UHRMS), incorporating both C18-silica and HILIC columns, to comprehensively analyze both polar and non-polar metabolite profiles in tissue samples from 99 patients with bladder cancer. By utilizing an untargeted approach with external validation, we identified twenty-five tissue metabolites that hold promise as potential indicators of BC. Furthermore, twenty-five characteristic tissue metabolites that exhibit discriminatory potential across bladder cancer tumor grades, as well as thirty-nine metabolites that display correlations with tumor stages were presented. Receiver operating characteristics analysis demonstrated high predictive power for all types of metabolomics data, with area under the curve (AUC) values exceeding 0.966. Notably, this study represents the first report in which human bladder normal tissues adjacent to cancerous tissues were analyzed using UHPLC-UHRMS. These findings suggest that the metabolite markers identified in this investigation could serve as valuable tools for the detection and monitoring of bladder cancer stages and grades.


Assuntos
Biomarcadores Tumorais , Neoplasias da Bexiga Urinária , Humanos , Biomarcadores Tumorais/metabolismo , Bexiga Urinária/metabolismo , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/metabolismo
18.
Life Sci ; 336: 122317, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040245

RESUMO

Interstitial cystitis (IC), also called painful bladder syndrome (PBS), is 2 to 5 times more common in women than in men, yet its cause and pathogenesis remain unclear. In our study using the cyclophosphamide (CYP)-induced mouse model of cystitis, histological evaluation of the urinary bladder (UB) lamina propria (LP) showed immune cell infiltrations, indicating moderate to severe inflammation. In this study, we noticed a differential expression of a subset of microRNAs (miRs) in the UB cells (UBs) of CYP-induced cystitis as compared to the control. UB inflammatory scores and inflammatory signaling were also elevated in CYP-induced cystitis as compared to control. We identified eight UBs miRs that exhibited altered expression after CYP induction and are predicted to have a role in inflammation and smooth muscle function (miRs-34c-5p, -34b-3p, -212-3p, -449a-5p, -21a-3p, -376b-3p, -376b-5p and - 409-5p). Further analysis using ELISA for inflammatory markers and real-time PCR (RT-PCR) for differentially enriched miRs identified miR-34c as a potential target for the suppression of UB inflammation in cystitis. Blocking miR-34c by antagomir ex vivo reduced STAT3, TGF-ß1, and VEGF expression in the UBs, which was induced during cystitis as compared to control. Interestingly, miR-34c inhibition also downregulated ROCK2 but elevated ROCK1 expression in bladder and detrusor cells. Thus, the present study shows that targeting miR-34c can mitigate the STAT3, TGF-ß, and VEGF, inflammatory signaling in UB, and suppress ROCK2 expression in UBs to effectively suppress the inflammatory response in cystitis. This study highlights miR-34c as a potential biomarker and/or serves as the basis for new therapies for the treatment of cystitis.


Assuntos
Cistite Intersticial , Cistite , MicroRNAs , Masculino , Camundongos , Animais , Humanos , Feminino , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cistite/induzido quimicamente , Bexiga Urinária/metabolismo , Cistite Intersticial/genética , Cistite Intersticial/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ciclofosfamida/efeitos adversos , Inflamação/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
19.
J Biochem Mol Toxicol ; 38(1): e23584, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009396

RESUMO

Urinary tract infection (UTI) mainly results from bacterial infections in the urinary tract and markedly impacts the normal lives of millions of patients worldwide. The infection and damage to urethral epithelial cells is the first and key step of UTI development and is a critical target for treating clinical UTI. Oxybutynin, an agent for treating urinary incontinence, is recently claimed with protective effects on bladder ultrastructure. Our study will assess the impact of Oxybutynin on inflammation in lipopolysaccharide (LPS)-stimulated bladder epithelial cells. Bladder epithelial T24 cells were treated with 1 µg/mL LPS with or without 10 and 20 µM Oxybutynin for 24 h. Increased levels of oxidative stress (OS) biomarkers, such as reactive oxygen species, 8-hydroxy-2'-deoxyguanosine, malondialdehyde, as well as upregulated inducible nitric oxide synthase and promoted release of nitric oxide, were observed in LPS-managed T24 cells, all of which were signally suppressed by Oxybutynin. Furthermore, severe inflammatory responses, including enhanced release of cytokines, upregulated matrix metallopeptidase-2 (MMP-2) and MMP-9, and raised monocyte chemoattractant protein-1 level, were found in LPS-challenged T24 cells, which were markedly reversed by Oxybutynin. Moreover, the activated toll-1ike receptor 4/nuclear factor-κB pathway observed in LPS-managed T24 cells was repressed by Oxybutynin. Collectively, Oxybutynin mitigated LPS-induced inflammatory response in human bladder epithelial cells.


Assuntos
Lipopolissacarídeos , Ácidos Mandélicos , Bexiga Urinária , Humanos , Lipopolissacarídeos/toxicidade , Bexiga Urinária/metabolismo , Citocinas/metabolismo , NF-kappa B/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Óxido Nítrico Sintase Tipo II/metabolismo , Células Epiteliais/metabolismo
20.
Neurourol Urodyn ; 43(1): 276-288, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010891

RESUMO

AIMS: This study aimed to investigate whether pathways involving transient receptor potential ankyrin 1 (TRPA1) channels in the urinary bladder mediate the bladder overactivity elicited by exposure to a low temperature in rats. METHODS: At postnatal week 10, female Sprague-Dawley (SD) rats were intraperitoneally injected with the TRPA1 channel antagonist, HC030031, at room temperature (RT) and subsequently exposed to low temperature (LT). Bladder specimens treated with HC030031 were evaluated for contractions through cumulative addition of the TRPA1 channel agonist trans-cinnamaldehyde. Two days before cystometric investigation, small interfering RNA (siRNA) targeting TRPA1 was transfected into urinary bladders. Then, cystometric investigations were performed on rats subjected to TRPA1 siRNA transfection at both RT and LT. Expression of TRPA1 channels in the urinary bladder was assessed through immunohistochemistry and real-time reverse transcription-polymerase chain reaction. RESULTS: At RT, micturition patterns were unaffected by HC030031 treatment. However, upon exposure to LT, rats treated with HC030031 exhibited a reduction of LT-elicited bladder overactivity, as evidenced by inhibited decreases in voiding interval, micturition volume, and bladder capacity. Additionally, HC030031 inhibited trans-cinnamaldehyde-induced contractions. Immunohistochemical analysis showed the presence of TRPA1 channels in the urinary bladder. Notably, rats with TRPA1 siRNA-transfected bladders could partially inhibit bladder overactivity during LT exposure. CONCLUSIONS: These findings indicate that pathways involving TRPA1 channels expressed in the urinary bladder could mediate the LT-elicited bladder overactivity.


Assuntos
Bexiga Urinária Hiperativa , Bexiga Urinária , Animais , Ratos , Bexiga Urinária/metabolismo , Bexiga Urinária Hiperativa/metabolismo , Feminino , Ratos Sprague-Dawley , Canal de Cátion TRPA1/metabolismo , Acroleína/administração & dosagem , Acroleína/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...